Continuous phase transition from Néel state to Z2 spin-liquid state on a square lattice

نویسندگان

  • Yang Qi
  • Zheng-Cheng Gu
چکیده

Recent numerical studies of the J1-J2 model on a square lattice suggest a possible continuous phase transition between the Néel state and a gapped spin-liquid state with Z2 topological order. We show that such a phase transition can be realized through two steps: First bring the Néel state to the U(1) deconfined quantum critical point, which has been studied in the context of Néel–valence bond solid (VBS) state phase transition. Then condense the spinon pair–skyrmion/antiskyrmion bound state, which carries both gauge charge and flux of the U(1) gauge field emerging at the deconfined quantum critical point. We also propose a Schwinger boson projective wave function to realize such a Z2 spin liquid state and find that it has a relatively low variational energy (−0.4893J1/site) for the J1-J2 model at J2 = 0.5J1. The spin liquid state we obtain breaks the fourfold rotational symmetry of the square lattice and therefore is a nematic spin liquid state. This direct continuous phase transition from the Néel state to a spin liquid state may be realized in the J1-J2 model, or the anisotropic J1x-J1y-J2 model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spin and Charge Fluctuations in Strongly Correlated Systems

Spin and charge are two fundamental degrees of freedom in strongly correlated electron systems. In this thesis we study low-energy effective theory and phase transitions of spin and charge in a variety of strongly correlated systems. First, we study effective theory of magnetic phase transition in Sp(4) spin system and iron-based superconductors. Quantum phase transitions beyond Landau paradigm...

متن کامل

Magnetic Properties in a Spin-1 Random Transverse Ising Model on Square Lattice

In this paper we investigate the effect of a random transverse field, distributed according to a trimodal distribution, on the phase diagram and magnetic properties of a two-dimensional lattice (square with z=4),  ferromagnetic Ising system consisting of magnetic atoms with spin-1. This study is done using the effectivefield theory (EFT) with correlations method. The equations are derived using...

متن کامل

Spin-liquid phase in a spin-1/2 quantum magnet on the kagome lattice.

We study a model of hard-core bosons with short-range repulsive interactions at half filling on the kagome lattice. Using quantum Monte Carlo numerics, we find that this model shows a continuous superfluid-insulator quantum phase transition, with exponents z=1 and nu approximately 0.67(5). The insulator, I*, exhibits short-ranged density and bond correlations, topological order, and exponential...

متن کامل

Global Phase Diagrams of Frustrated Quantum Antiferromagnets in Two Dimensions: Doubled Chern-Simons Theory

We present a general approach to understanding the quantum phases and phase transitions of quantum antiferromagnets in two spatial dimensions. We begin with the simplest spin liquid state, the Z2 spin liquid, whose elementary excitations are spinons and visons, carrying Z2 electric and magnetic charges respectively. Their dynamics are expressed in terms of a doubled U(1) Chern Simons theory, wh...

متن کامل

Quantum Phase Transitions in d-wave Superconductors and Antiferromagnetic Kagome Lattices

Strongly correlated systems are of interest due to their exotic collective behavior. In this thesis we study low energy effective theory and quantum phase transitions of d-wave superconductors and spin liquids. First we examine the quantum theory of the spontaneous breaking of lattice rotation symmetry in d-wave superconductors on the square lattice. This is described by a field theory of an Is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014